Topological Sound and Flocking on Curved Surfaces
نویسندگان
چکیده
Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.
منابع مشابه
Automatic Generation of High-level Contact State Space between 3D Curved Objects
Information of high-level, topological contact states is useful and sometimes even necessary for a wide range of applications, from robotic tasks involving compliant motion to virtual prototyping and simulation. This paper addresses how to represent concisely and generate automatically graphs of contact states between 3D curved objects of a broad class, which may include smooth curved or planar...
متن کاملQuasi-Static Transient Thermal Stresses in an Elliptical Plate due to Sectional Heat Supply on the Curved Surfaces over the Upper Face
This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous boundary condition of the third kind on the fixed elliptical curved surface. The solution to conductivity equation is elucidated by employing a classical method. The solution of stre...
متن کاملTopology of Negatively Curved Real Affine Algebraic Surfaces
We find a quartic example of a smooth embedded negatively curved surface in R homeomorphic to a doubly punctured torus. This constitutes an explicit solution to Hadamard’s problem on constructing complete surfaces with negative curvature and Euler characteristic in R. Further we show that our solution has the optimal degree of algebraic complexity via a topological classification for smooth cub...
متن کاملTitle of dissertation : LENGTH SPECTRAL RIGIDITY OF NON - POSITIVELY CURVED SURFACES
Title of dissertation: LENGTH SPECTRAL RIGIDITY OF NON-POSITIVELY CURVED SURFACES Jeffrey Frazier, Doctor of Philosophy, 2012 Dissertation directed by: Professor William Goldman Department of Mathematics Length spectral rigidity is the question of under what circumstances the geometry of a surface can be determined, up to isotopy, by knowing only the lengths of its closed geodesics. It is known...
متن کاملTOPOLOGY OF NONNEGATIVELY CURVED HYPERSURFACES WITH PRESCRIBED BOUNDARY IN Rn
We prove that a smooth compact immersed submanifold of codimension 2 in R, n ≥ 3, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. Analogous results for noncompact fillings are obtained as well. On the other hand, we show that these topological finiteness theorems may not hold if the prescribed boundary is not sufficiently regular, e.g., C. In part...
متن کامل